7.lk, kokonaislukujen vertailu, itseisarvo ja vastaluku

Suositeltava osaamistaso: 
85%

a) Kumpi luvuista on suurempi, \(0\) vai \(-2\)?

b) Kumpi luvuista on suurempi, \(0\) vai \(3\)?

Sievennä:

c) \(-(+99)\)

d) \(-(-1)\)

e) \(\mid -11 \mid\) (luvun $-11$ itseisarvo, eli etäisyys nollasta)

f) \(\mid 0 \mid\) (luvun $0$ itseisarvo, eli etäisyys nollasta)

Pisteytysohje: 

Lukusuorassa luvut ovat suuruusjärjestyksessä. Luku on sitä suurempi, mitä enemmän se on oikealla.

a) Lukusuoran avulla voidaan havaita, että luku $0$ on suurempi kuin luku $-2$. \(\require{color}\color{red}\text{(+1p)}\)

b) Lukusuoran avulla voidaan havaita, että luku $3$ in suurempi kuin luku $0$. \(\require{color}\color{red}\text{(+1p)}\)

c) \(-(+99)=-99 \quad \require{color}\color{red}\text{(+1p)}\)

d) \(-(-1)=1\)  (tai $+1$)   \(\require{color}\color{red}\text{(+1p)}\)

e) Luku $-11$ sijaitsee lukusuoralla $11$:n yksikön päässä origosta, eli luvusta $0$. Näin ollen luvun $-11$ itseisarvo (etäisyys nollasta) on $11$. Voidaan merkitä \(\mid -11 \mid = 11 \quad \require{color}\color{red}\text{(+1p)}\)

f) Luku $0$ sijaitsee lukusuoralla $0$:n yksikön päässä origosta, eli luvusta $0$. Näin ollen luvun $0$ itseisarvo (etäisyys nollasta) on $0$. Voidaan merkitä \(\mid 0 \mid = 0 \quad \require{color}\color{red}\text{(+1p)}\)

Pisteytysohjeen mukaiset pisteet
Ymmärryksen arviointi
Suorituksen kirjaaminen
Navigointi

Mitkä kaikki merkeistä \(=,\ \ne,\ <,\ \leq,\ >\)tai \(\geq\) voidaan sijoittaa seuraavien lukujen väliin niin, että väite on tosi?

a) \(0 \qquad 4\)

b) \(0 \qquad -11\)

c) \(0 \qquad 0\)

Pisteytysohje: 

 Seuraavat väiteet ovat tosia.

a)
\(0 \ne 4\) (luku $0$ on erisuuri kuin luku $4$)
\(0 < 4\) (luku $0$ on pienempi kuin luku $4$)
\(0 \leq 4\) (luku $0$ on pienempi tai yhtäsuuri kuin luku $4$)

(kaikki kolme oikein \(\require{color}\color{red}\text{(+2p)}\), 1-2 oikein \(\require{color}\color{red}\text{(+1p)}\))

b)
\(0 \ne -11\) (luku $0$ on erisuuri kuin luku $-11$)
\(0 > -11\) (luku $0$ on suurempi kuin luku $-11$)
\(0 \geq -11\) (luku $0$ on suurempi tai yhtäsuuri kuin luku $-11$)

(kaikki kolme oikein \(\require{color}\color{red}\text{(+2p)}\), 1-2 oikein \(\require{color}\color{red}\text{(+1p)}\))

c)
\(0 = 0\) (luku $0$ on yhtäsuuri kuin luku $0$)
\(0 \geq 0\) (luku $0$ on suurempi tai yhtäsuuri kuin luku $0$)
\(0 \leq 0\) (luku $0$ on pienempi tai yhtäsuuri kuin luku $0$)

(kaikki kolme oikein \(\require{color}\color{red}\text{(+2p)}\), 1-2 oikein \(\require{color}\color{red}\text{(+1p)}\))

Pisteytysohjeen mukaiset pisteet
Ymmärryksen arviointi
Suorituksen kirjaaminen
Navigointi

a) Muodosta jokin laskulauseke, joka sisältää vähintään yhdet itseisarvomerit, summamerkin ja erotusmerkin. Käytä sekä negatiivisia että positiivisia lukuja. Laske lauseke ja tarkista vastauksen oikeellisuus toisen ihmisen kanssa (esim. kaverisi tai vanhempasi).

b) Muodosta niin monta erilaista laskulauseketta kuin pystyt alla olevan ohjeen mukaisesti, ja laske ne.

  • Laske yhteen luku, jonka etäisyys nollasta on miinus neljä ($-4$), sen luvun kanssa, jonka itseisarvo on nolla.
Pisteytysohje: 

a)

  • Muodostettu laskulauseke annettujen ohjeiden mukaisesti. \(\require{color}\color{red}\text{(+1p)}\)
  • Näytetty lauseke toiselle ihmiselle (esim. kaveri tai vanhempi) ja keskusteltu siitä. \(\require{color}\color{red}\text{(+1p)}\)
  • Päädytty yhteisymmärrykseen, että lauseke on laskettu oikein. \(\require{color}\color{red}\text{(+1p)}\)

b) Kahden luvun välinen etäisyys on aina positiivinen mitta. Siten ei ole olemassakaan lukua, jonka etäisyys nollasta olisi $-4$. Tehtävällä ei ole ratkaisua. \(\require{color}\color{red}\text{(+3p)}\)

 

Pisteytysohjeen mukaiset pisteet
Ymmärryksen arviointi
Suorituksen kirjaaminen
Navigointi

Tekemäsi itsearvion pohjalta tuloksesi prosentteina on: