Sievennä lausekkeet
a) $(3x+1)(3x-1)$
b) $(x+6)^2$
c) $(3x^2-4)^2$
Hyödynnetään ratkaisuissa muistikaavoja.
\(\begin{align*} \textbf{a) } \quad &(3x+1)(3x-1) &&||\ (a+b)(a-b)=a^2-b^2 \\ =&(3x)^2- (1)^2 &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{9x^2-1}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
\(\begin{align*} \textbf{b) } \quad &(x+6)^2 &&||\ (a+b)^2=a^2+2ab+b^2 \\ =&x^2+ 2 \cdot x \cdot 6+6^2 &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{x^2+12x+36}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
\(\begin{align*} \textbf{c) } \quad &(3x^2-4)^2 &&||\ (a-b)^2=a^2-2ab+b^2 \\ =&(3x^2)^2- 2 \cdot 3x^2 \cdot 4+4^2 &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{9x^4-24x^2+16}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
Jaa polynomi tekijöihin.
a) $4a+4b-4c$
b) $3x^4+6x^2$
c) $x^2-16$
\(\begin{align*} \textbf{a) } \quad &4a+4b-4c&&||\ \text{yhteisenä tekijänä luku 4} \\ =&\underline{\underline{4(a+b-c)}} && \require{color}\color{red}{\text{(+2p)}} \end{align*}\)
\(\begin{align*} \textbf{b) } \quad &3x^4+6x^2 &&||\ \text{yhteisenä tekijänä }3x^2 \\ =&3x^2 \cdot x^2+ 3x^2 \cdot 2 &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{3x^2(x^2+2)}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
\(\begin{align*} \textbf{c) } \quad &x^2-16 &&||\ a^2-b^2=(a+b)(a-b) \\ =&x^2- 4^2 &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{(x+4)(x-4)}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
Jaa polynomi tekijöihin.
a) $x^2+6x+9$
b) $x^2-x+\frac14$
c) $ab+4a+2b+8$
\(\begin{align*} \textbf{a) } \quad &x^2+6x+9 &&||\ a^2+2ab+b^2=(a+b)^2 \\ =&x^2 +2 \cdot x \cdot 3 +3^2 &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{(x+3)^2}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
\(\begin{align*} \textbf{b) } \quad &x^2-x+\frac14&&||\ a^2-2ab+b^2=(a-b)^2 \\ =&x^2 -2 \cdot x \cdot \frac12 +\Big(\frac12 \Big)^2 &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{\Big(x-\frac12\Big)^2}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
\(\begin{align*} \textbf{c) } \quad &ab+4a+2b+8 &&||\ \text{ryhmittely} \\ =&a(b+4)+2(b+4) &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{(a+2)(b+4)}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
Tekemäsi itsearvion pohjalta tuloksesi prosentteina on: