Sievennä lausekkeet
a) $(4x+2)(4x-2)$
b) $(x^2+9)^2$
c) $(y-8)^2$
Hyödynnetään ratkaisuissa muistikaavoja.
\(\begin{align*} \textbf{a) } \quad &(4x+2)(4x-2) &&||\ (a+b)(a-b)=a^2-b^2 \\ =&(4x)^2- 2^2 &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{16x^2-4}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
\(\begin{align*} \textbf{b) } \quad &(x^2+9)^2 &&||\ (a+b)^2=a^2+2ab+b^2 \\ =&(x^2)^2+ 2 \cdot x^2 \cdot 9+9^2 &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{x^4+18x^2+81}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
\(\begin{align*} \textbf{c) } \quad &(y-8)^2 &&||\ (a-b)^2=a^2-2ab+b^2 \\ =&y^2- 2 \cdot y \cdot 8+8^2 &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{y^2-16y+64}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
Jaa polynomi tekijöihin.
a) $3a-6b-9c$
b) $4x^4-16x^2$
c) $x^2-4$
\(\begin{align*} \textbf{a) } \quad &3a-6b-9c&&||\ \text{yhteisenä tekijänä luku 3} \\ =&3 \cdot a - 3 \cdot 2b - 3 \cdot 3c &&\require{color}\color{red}{\text{(+1p)}}\\=&\underline{\underline{3(a-2b-3c)}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
\(\begin{align*} \textbf{b) } \quad &4x^4-16x^2 &&||\ \text{yhteisenä tekijänä }4x^2 \\ =&4x^2 \cdot x^2- 4x^2 \cdot 4 &&\require{color}\color{red}{\text{(+1p)}} \\=&4x^2(x^2-4) &&||\ a^2-b^2=(a+b)(a-b) \\ =&\underline{\underline{4x^2(x+2)(x-2)}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
\(\begin{align*} \textbf{c) } \quad &x^2-4 &&||\ a^2-b^2=(a+b)(a-b) \\ =&x^2- 2^2 &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{(x+2)(x-2)}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
Jaa polynomi tekijöihin.
a) $4y^2+4y+1$
b) $x^4-4x^2+4$
c) $6xy-9x-4y+6$
\(\begin{align*} \textbf{a) } \quad &4y^2+4y+1 &&||\ a^2+2ab+b^2=(a+b)^2 \\ =&(2y)^2 +2 \cdot 2y \cdot 1 +1^2 &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{(2y+1)^2}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
\(\begin{align*} \textbf{b) } \quad &x^4-4x^2+4 &&||\ a^2-2ab+b^2=(a-b)^2 \\ =&(x^2)^2 -2 \cdot x^2 \cdot 2 +2^2 &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{(x^2-2)^2}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
\(\begin{align*} \textbf{c) } \quad &6xy-9x-4y+6 &&||\ \text{ryhmittely} \\ =&3x(2y-3)-2(2y-3) &&\require{color}\color{red}{\text{(+1p)}} \\ =&\underline{\underline{(3x-2)(2y-3)}} && \require{color}\color{red}{\text{(+1p)}} \end{align*}\)
Tekemäsi itsearvion pohjalta tuloksesi prosentteina on: