Derivoi.
a) −8
b) 2,9x
c) −23x
d) −x4
e) x5
f) −1,8x4
a) D(−8)=0 (+1p)
b) D(2,9x)=2,9 (+1p)
c) D(−23x)=−23 (+1p)
d) D(−x4)=−14 (+1p)
e) D(x5)=5x4 (+1p)
f) D(−1,8x4)=−1,8⋅4x3=−7,2x3 (+1p)
Derivoi funktiot.
a) $f(x)=\frac{3}{5}x^4+2x^2+7x-9$
b) $h(t)=\frac{2t+6}{8}$
c) $m(r)=5(r^3+2r^2-4r+8)$
a)
\(\begin{align} f'(x)&=D(\frac{3}{5}x^4+2x^2+7x-9)\\ &=\frac{3}{5}\cdot 4x^3+2\cdot 2x+7\cdot 1-0 &\color{Red}{(+1\text{p})}\\ &=\frac{12}{5}x^3+4x+7 &\color{Red}{(+1\text{p})} \end{align}\)
b)
\(\begin{align} h'(t)&=D(\frac{2t+6}{8}) \\ &= D(\frac{2t}{8}+\frac{6}{8}) &\color{Red}{(+1\text{p})}\\ &= \frac{2}{8}+0&\color{Red}{(+\frac{1}{2}\text{p})}\\ &=\frac{1}{4}& \color{Red}{(+\frac{1}{2}\text{p})} \end{align}\)
c)
\(\begin{align} m'(r)&=D(5(r^3+2r^2-4r+8))\\ &=D(5r^3+10r^2-20r+40)&\color{Red}{(+1\text{p})}\\ &=5\cdot3r^2+10\cdot 2r-20 \cdot 1+0 &\color{Red}{(+\frac{1}{2}\text{p})}\\ &=15r^2+20r-20 &\color{Red}{(+\frac{1}{2}\text{p})} \end{align}\)
Olkoon $f(x)=-3x^2+12x-15$.
a) Määritä funktion $f$ derivaatan nollakohdat.
b) Määritä $f'(-2)$.
c) Ratkaise yhtälö $f'(x)=-12$.
\(\begin{align} f'(x)&=D(-3x^2+12x-15) \\ &=-3\cdot 2x+12 \cdot 1 - 0 &\color{Red}{(+\frac{1}{2}\text{p})} \\ &=-6x+12 &\color{Red}{(+\frac{1}{2}\text{p})} \end{align}\)
a) Ratkaistaan funktion $f$ derivaatan nollakohdat:
\(\begin{align} f'(x)&=0 &\color{Red}{(+\frac{1}{2}\text{p})}\\ -6x+12 &= 0 &\color{Red}{(+\frac{1}{2}\text{p})}\\ -6x &= -12 \quad ||:(-6) \\ x&=2 \end{align}\)
Vastaus: $x=2$ $\color{Red}{(+1\text{p})}$
b) Määritetään $f'(-2)$:
\(\begin{align} f'(-2)&=-6\cdot (-2)+12 &\color{Red}{(+\frac{1}{2}\text{p})} \\ &=12+12 \\ &= 24 \end{align}\).
Vastaus: $f'(-2)=24$ $\color{Red}{(+1\text{p})}$
c) Ratkaistaan yhtälö
\(\begin{align} f'(x)&=-12 \\ -6x+12&=-12 &\color{Red}{(+\frac{1}{2}\text{p})}\\ -6x&= -12-12 \\ -6x&=-24 \quad ||:(-6) \\ x&=4 \end{align}\)
Vastaus: $f'(4)=12$ $\color{Red}{(+1\text{p})}$
Tekemäsi itsearvion pohjalta tuloksesi prosentteina on: